Insight into the mechanism of an iron dioxygenase by resolution of steps following the FeIV=HO species.

نویسندگان

  • Piotr K Grzyska
  • Evan H Appelman
  • Robert P Hausinger
  • Denis A Proshlyakov
چکیده

Iron oxygenases generate elusive transient oxygen species to catalyze substrate oxygenation in a wide range of metabolic processes. Here we resolve the reaction sequence and structures of such intermediates for the archetypal non-heme Fe(II) and alpha-ketoglutarate-dependent dioxygenase TauD. Time-resolved Raman spectra of the initial species with (16)O(18)O oxygen unequivocally establish the Fe(IV) horizontal lineO structure. (1)H/(2)H substitution reveals direct interaction between the oxo group and the C1 proton of substrate taurine. Two new transient species were resolved following Fe(IV) horizontal lineO; one is assigned to the nu(FeO) mode of an Fe(III) horizontal line O(H) species, and a second is likely to arise from the vibration of a metal-coordinated oxygenated product, such as Fe(II) horizontal line O horizontal line C(1) or Fe(II) horizontal line OOCR. These results provide direct insight into the mechanism of substrate oxygenation and suggest an alternative to the hydroxyl radical rebinding paradigm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...

متن کامل

Theoretical Investigation of the Reaction Mechanism for a Type of N-heterocyclic Compound Involving Mono-N-aryl-3-aminodihydropyrrol

The kinetics of reaction between 4-methylaniline (1), dimethyl acetylenedicarboxylate (2) and formaldehyde (4) has been theoretically investigated to gain further insight into the reaction mechanism. The results of theoretical calculations were achieved using the ab initio method at the HF/6-311g (d, p) level of theory in gas phase. The mechanism of this reaction had 5 steps. Theoretical kineti...

متن کامل

A DFT Study of the cis-Dihydroxylation of Nitroaromatic Compounds Catalyzed by Nitrobenzene Dioxygenase

The mechanism of cis-dihydroxylation of nitrobenzene and 2-nitrotoluene catalyzed by nitrobenzene 1,2-dioxygenase (NBDO), a member of the naphthalene family of Rieske non-heme iron dioxygenases, was studied by means of the density functional theory method using four models of the enzyme active site. Different possible reaction pathways for the substrate dioxygenation initiated either by the Fe(...

متن کامل

Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene) from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp), and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by d...

متن کامل

An insight into effect of surface functional groups on reactivity of Sphalerite (110) surface with Xanthate collector: a DFT study

The reactivity of the protonated and hydroxylated sphalerite (1 1 0) surface with xanthate was simulated using the density functional theory (DFT). The difference between the energy of the lowest unoccupied molecular orbital of the sphalerite surface and the energy of the highest occupied molecular orbital of xanthate (  was used to compare the reaction capability of xanthate with fresh and fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 9  شماره 

صفحات  -

تاریخ انتشار 2010